When developing
the designer has more choices for element cylinder/piston, but everything has
its advantages and disadvantages.Some of the features are:
Steel liner, Cast Iron piston
Cast Iron liner, Cast Iron piston
Steel liner, piston Steel
Steel liner, piston Aluminium, Cast Iron ring (s)
As alone two elements
are interrelated function play a very important role and it is therefore very
important to maintain an optimal working relationship between these two
elements, because such operating parameters are very important.Steel liner, Cast Iron piston
Cast Iron liner, Cast Iron piston
Steel liner, piston Steel
Steel liner, piston Aluminium, Cast Iron ring (s)
There are other possibilities, but these above are actually the nearest optimal and most cost.
Machining processes that help in this are honing and turning.
Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive stone against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but may also improve the surface texture.
Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helical toolpath by moving more or less linearly while the workpiece rotates. The tool's axes of movement may be literally a straight line, or they may be along some set of curves or angles, but they are essentially linear (in the nonmathematical sense). Usually the term "turning" is reserved for the generation of external surfaces by this cutting action, whereas this same essential cutting action when applied to internal surfaces (that is, holes, of one kind or another) is called "boring". Thus the phrase "turning and boring" categorizes the larger family of (essentially similar) processes. The cutting of faces on the workpiece (that is, surfaces perpendicular to its rotating axis), whether with a turning or boring tool, is called "facing", and may be lumped into either category as a subset.Turning can be done manually, in a traditional form of lathe, which frequently requires continuous supervision by the operator, or by using an automated lathe which does not. Today the most common type of such automation is computer numerical control, better known as CNC. (CNC is also commonly used with many other types of machining besides turning.)
Steel liner, Cast iron piston
This combination gives the highest possibility of producing a runable and durable engine that will have expected working life under predicted quality. Enginners prefer this combination for small and medium size engines. Very important part when using this combination is that the bore should be pointed, wider below the exhaust ports.
Cast Iron liner, Cast Iron piston
This is a little bit difficultier operation then the last one because of the brittle nature of thin walled cast iron turnings. The liner requires care and a bit of prior experince in workholding. In this process, the cylinder is roughed out, then the bore is finished, but not honed. It is next packed with case hardening compound using a bolt and two large washers to cover the ends. It is not "case hardened" as such, and is significantly softer, but the results are worthwhile. This combination doesn’t give any specific advantage in regard to previous combination.
Steel liner, Steel piston
Both components must be hardened, with piston tempered to 10 Rockwell c points lower than liner to minimize gailing. Higher oil usage is preffered for this combination. Tolerances are very small.
Steel liner, Aluminium piston with Cast Iron ring(s)
This combination has a highest priority. Requires experencied workers for making this combination possible for combination in engine. Errors are not allowed. Ringed piston doesn’t need honing.
best suited for larger engines. If its created with precision and care, the combination will produce an excellent, long lasting engine
Nema komentara:
Objavi komentar